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Control of Complex Systems Initiative:

From Big Data to Big Controls

CCSI: A five year, multi-million dollar internal research investment to build
and demonstrate development and delivery of best of class solutions for
problems in the control of complex systems.

Challenges for Big Controls:

» Large numbers of sensing and/or
control end points

» Multiple scales of operation usually
with multiple time scales

» Node heterogeneity

» Pervasive computing/autonomous
nodes

Control solutions will be: 0,0
Scalable, deployable, robust, resilient, °4TA 10 B\® G
and adoptable.




Significant Challenges Facing the Grid

and in tension with each other
» Maintain and increase reliability
» Integrate renewables & low-carbon sources

» Potential electrification of vehicle transportation
(& other end uses as electricity becomes the preferred “fuel”)

» Increase asset utilization, reduce capacity for peak loads

» While keeping costs & revenues as low as possible

Smart grid is the most promising approach to
addressing these challenges simultaneously

» Much of smart grid’s promise lies in distributed assets: Demand
response, distributed storage & generation, electric vehicles,
smart inverters



Future Control Architecture of the Grid

Designing a novel control architecture for the power
grid needs a significant number of considerations,

e.g.:
» Laws of electro-physics must be observed
Current/future stakeholder boundaries must be respected

>
» Architecture must be deployable in a modular, incremental fashion
>

For reasons of robustness, resilience & flexibility, the control
architecture must be layered

» Considering the huge number of assets, lowest layer must be a
distributed control architecture

Transactive Controls is a very promising approach for
such a distributed control architecture



Transactive Controls / Transactive Energy

Refers to techniques for managing the generation,
consumption or flow of electricity within a power
system, using economic or market-based constructs,

while respecting grid reliability constraints.

The term “transactive” comes from considering that
decisions are made based on a value. These decisions
may be analogous to, or literally, economic
transactions.

Transactive Energy Workshop Proceedings 2012, prepared by the GridWise® Architecture Councik
March 2012, PNNL-SA-90082 (http://www.gridwiseac.org/historical/tew2012/tew2012.aspx)
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What Problems or Issues Is
Transactive Control and Coordination
Designed to Address?

o
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Principal Challenges Addressed by TC2

Principal Challenge

» Centralized optimization is
unworkable

m for such large numbers of
controllable assets, e.g. ~10° for
full demand response participation

» Interoperability

» Privacy & security

m due to sensitivity of the data
required by centralized techniques

» Scalability

Approach

» Distributed approach with self-organizing, self-
optimizing properties of market-like constructs

» Simple information protocol, common between
all nodes at all levels of system:

guantity, price or value, & time

» Minimizes risks & sensitivities by limiting content
of data exchange to simple transactions

» Self-similar at all scales in the grid

» Common paradigm for control & communication
among nodes of all types

» Ratio of parent to child nodes limited to ~103

=
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Principal Challenges Addressed by TC2 (cont.)

Principal Challenge

» Level playing field for all assets of
all types:

m existing infrastructure & new
distributed assets

» Maintain customer autonomy
m “Act locally but think globally ...”

» Achieving multiple objectives with
assets essential for them to be
cost effective

» Stability & controllability

Approach

» Market-like construct provides equal
opportunity for all assets

» Selects lowest cost, most willing assets to “get
the job done”

» Incentive-based construct maintains free will

m customers & 3rd-parties fully control their assets
m yet collaborate (and get paid for it)

» Allows (but does not require) distribution utility
to act as natural aggregator

m address local constraints while representing
the resource to the bulk grid

» Feedback provides predictable, smooth, stable
response from distributed assets

» Creates what is effectively closed loop control
needed by grid operators

=
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PNNL Transactive Energy Approach:
Transactive Control & Coordination
(TC2)

o
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Transactive Control from Interaction of Price

Discovery & Customer Bidding Algorithms

Precise, stable control of congested grid nodes derived
from customer price-responsive bidding algorithm
Interacting with price discovery mechanism (e.g., a market)

Transactive Cooling Real-time Market
Thermostat Clears Customer Bids
More More
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Hierarchical Network of Transactive Nodes

Parallels the Grid Infrastructure

Node: point in the grid where flow Node Functionality:
of power needs to be managed » “Contract” for power it
needs from the nodes

- supplying it
» “Offer” power to the nodes

It supplies

» Resolve price (or cost) &
guantity through a price
discovery process

® market clearing, for
example

» Implement internal price-
responsive controls

o
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Properties of Transactive Nodes

» Use local conditions & global information to make control
decisions for its own operation

» Indicate their response to the network node(s) serving them
m to an incentive signal from the node(s) serving them

m as a feedback signal forecasting their projected net flow of electricity
(production, delivery, or consumption)

» Setting incentive signal for nodes serves to obtain precise
response from them, based on their feedback signals

» Responsiveness is voluntary (set by the node owner)

» Response is typically automated (and reflected in
the feedback signal) *:5’/
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Links All Values/Benefits in Multi-Objective Control

Long-term objective for TC2 is to
simultaneously achieve combined benefits

» Reduce peak loads (minimize new capacity, maximize
asset utilization) — generation, transmission, & distribution

» Minimize wholesale prices/production costs
» Reduce transmission congestion costs

» Provide stabilizing services on dynamically-constrained
transmission lines to free up capacity for renewables

» Provide ancillary services, ramping, & balancing
(especially in light of renewables)

» Managing distribution voltages in light of rapid
fluctuations in rooftop solar PV system output \:5;/
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Transactive Cooling Thermostat Generates

Demand Bid based on Customer Settings

= User's comfort/savings setting implies limits around normal setpoint (T 4eireq). t€MP. elasticity (k)
= Current temperature used to generate bid price at which AC will “run”
= AMI history can be used to estimate bid quantity (AC power)

» Market sorts bids & quantities into demand curve, clears market returns clearing price

» Thermostat adjusts setpoint to reflect clearing price & temperature elasticity
o Price is normalized: P* = [P —-mean(P)] / o(P) /(
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RTP Double Auction Market — Uncongested
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P, Price ($/MWh)

RTP Double Auction Market — Congested
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What about the Congestion Surplus?

customers . .
providing » Congestion surplus is extra
A ' capacity revenue coIIec_ted from |
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Fully Engaging Demand.:
What We’ve Learned from the

Olympic Peninsula Demonstration
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Olympic Peninsula Demonstration
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Olympic Peninsula Demo: Key Findings (1)

Customers can be recruited, retained, and will respond to
dynamic pricing schemes if they are offered:

» Opportunity for significant savings (~10% was suggested)

\ 4

A “no-lose” proposition compared to a fixed rate

» Control over how much they choose to respond, with which end uses,
and a 24-hour override

m prevents fatigue: reduced participation if called upon too often
» Technology that automates their desired level of response

» A simple, intuitive, semantic interface to automate their response

More , More Translates to control parameters:
Comfort Savings
l K, Thaxr Tmin (s€e Virtual Thermostat)
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Olympic Peninsula Demo: Key Findings (2)

Significant demand response was obtained:

>
>

15% reduction of peak load

Up to 50% reduction in total load for several days in a row during
shoulder periods

Response to wholesale prices + transmission congestion + distribution
congestion

Able to cap net demand at an arbitrary level to manage local distribution
constraint

Short-term response capability could provide regulation, other ancillary
services adds significant value at very low impact and low cost)

Same signals integrated commercial & institutional loads, distributed
resources (backup generators)
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Load Shifting Results for RTP Customers
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»  Winter peak load

>

shifted by pre-heating

Resulting new peak
load at 3 AM is non-
coincident with system
peak at 7 AM

lllustrates key finding
that a portfolio of
contract types may be
optimal —i.e., we don't
want to just create a
new peak

-
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